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Abstract. The spinless Falicov-Kimball model on a two-dimensional square lanice is studied 
using the method of restricted phase diagrams constructed in the grand canonical ensemble. The 
results are compared with the one-dimensional model. Although the two-dimensional phase 
diagrams are more complex, with several distinct families of ion configurations occurring as 
ground states, there are surprising similadties with the one:dimensional case. Within each family 
of configurations. the ground stales form a devil's staircase strumre and the configurations are 
constructed according to a composition mle identical to that in one dimension. It is also found 
that, as in one dimension, segregation occurs in the non-neutral model for large ion-electron 
interaction strength. Some features of the phase diagrams are understood by examining the 
effective two-body ion interaction. 

1. Introduction 

There are several reasons for the continued interest in the Falicov-Kimball model (FKM) 
over the past several decades. The model was originally proposed [I] as a model of metal- 
insulator transitions in mixed-valence compounds of race earths and transition metals. Since 
then, it has been studied as a model of crystallization due to effective interactions mediated 
by band electrons, as a variant of the Hubbard model [Z], and as a model of binary alloys 
[3]. Our interest is motivated by the fact that the FKM is the simplest known model 
with nontrivial many-body correlation effects. It is amenable to analytical treatment and 
controlled approximations, and the solutions typically show a form of charge-density-wave 
order in the ground state. Therefore, we view the FKM as a tool for studying the tendency 
for chargedensity-wave formation in more general interacting fermion systems, as well as 
a model of physical interest in its own right. Work on applying results from the FKM to 
more general contexts includes the construction of a strong-coupling mean-field theory of 
the Hubbard model [3,4], an investigation of the breakdown of Fermi liquid theory [SI, a 
study of electron-phonon interactions [6], and a study of the asymmetric Hubbard model 
P I .  

In this paper we study the ground-state phase diagram of the spinless FKM on a two- 
dimensional square lattice. Our study is based on the restricted phase diagrams constructed 
in the grand canonical ensemble for various values of interaction constant U. 
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Previous work on the Falicov-Kimball model has concentrated on the one-dimensional 
case, and there the phase diagram has been found to have a very rich structure [3,8-IO]. In 
particular, in the limit of large values of U only domains of the so-called most homogeneous 
configurations of the ions appear in the phase diagram constructed in the grand canonical 
ensemble [9, 11, 121. The effective interactions between ions are repulsive in this case. On 
the other hand, for small values of U, other periodic phases appear in the phase diagram 
as well as the most homogeneous configurations. If, additionally, the density of the ions is 
close to zero (or unity) then the formation of molecules containing two or more ions (or 
vacancies) is observed [9, IO]. 

Much less is known about the two-dimensional system. It has been proven rigorously 
[2, 131 that the ground state at half filling (pi = pa = 1/2) is the 'chequerboard' 
configuration (figure 3) and that the long-range order persists to nonzero temperature; this is 
a general result for bipartite lattices in any dimension greater than one. In [I41 the method 
of restricted phase diagrams was applied to the two-dimensional square lattice, but only 
configurations with ion density equal to 112 were taken into account. Later, some general 
properties of the phase diagrams were established, and rigorous results were obtained in the 
limit of large values of U [15-171. In particular the ground-state configurations of the ions 
were found for the neutral case (p; = p e )  and p = 113, 114 and 1/5, and a characterization 
of the ground states for densities in the range 1/4 < p < 1/2 was given. In addition, 
an argument has been proposed [8, 181 suggesting that the phase diagram in the canonical 
ensemble for the two-dimensional case should be qualitatively the same as that for the 
d = CO model, which has been solved exactly [19]. 

The two-dimensional FKM is much more difficult to study than the one-dimensional 
one because the analytical formulae for the total energy of a one-dimensional system do 
not generalize to two dimensions, except for a few special classes of configurations. Thus 
the total energy of the system for an arbitrary configuration can be found only from direct 
numerical diagonalization of the Hamiltonian. Another complication is that a much larger 
set of ionic configurations has to be taken into account to construct a reliable phase diagram. 

In the next section we calculate the effective interaction between two ions mediated by 
itinerant electrons. We also review some rigorous results on the two-dimensional model 
which provide a skeleton phase diagram, and discuss the solution of the model for periodic 
ion configurations, on which our numerical work is based. In section 3 we supply some 
computational details, followed by the results in the form of restricted phase diagrams for 
various values of the interaction strength U .  Section 4 contains discussion of the results 
and our conclusions. 

2. Analytical results 

2.1. The model 

The spinless Falicov-Kimball model describes the interaction of two species of particle: 
a set of spinless fermions, conventionally termed electrons and represented by fermion 
operators at and ai on lattice site i ,  and a set of infinitely massive classical particles, 
termed ions, described by classical occupation variables wi taking the values 0 or 1 on 
each site. In other words, wi = 1 if site i is occupied by an ion, and w; = 0 if site i is 
vacant. Each particle does not interact with particles of the same species, hut there is an 
on-site interaction between electrons and ions, whose strength is given by the dimensionless 
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constant U .  Thus we write the Hamiltonian 

t where (ij) means that sites i and j are nearest neighbours, ni =~ aiai is the electron 
occupation of site i, N is the number of lattice sites, and pe = ~ N J N  and pi = N i / N  
are electron and ion densities, respectively. The energy scale has  been chosen to be the 
electron bandwidth, so that the electron hopping rate is unity; then U is the energy of 
the electron-ion interaction in these units. The last two terms are included when we are 
working in the grand canonical ensemble, and then fie and pi are the chemical potentials. 
The independent parameters in the model are U ,  pe, pi in the canonical ensemble and U ,  
pe, pi in the grand canonical ensemble. 

The problem of constructing the ground-state phase diagram in the grand canonical 
ensemble is formulated as follows. For a given point (pe, pi) in the plane of chemical 
potentials, consider all possible ionic configurations, given by all possible values of the 
variables wi. For each configuration, the electron Hamiltonian H, is given by the first two 
terms of (1) and represents free electrons moving in a fixed potential created by the ions; 
the resulting single-particle states of He are filled up to the Fermi level E p ,  and the total 
electronic energy ET(w,  E p )  is then to be minimized over all ion configurations and over 
the Fermi level. 

The E p  minimization is trivial and gives, of course, 

El; = pe - Uf2.  (2) 

The subsequent minimization over the ion configurations is the nontrivial aspect, and leads 
to a form of many-body behaviour. 

The chemical potentials have been chosen so that the Hamiltonian is invariant (up to a 
constant) under a transformation consisting of particlehole inversion of both electrons and 
ions, followed by p + -p. It follows that the phase diagram of the model is symmetric 
with respect to inversion about the origin, in the sense that the ground-state phases at 
(pe, pi) and (-fie. -p;) are related by a particlehole transformation. 

Performing a particle-hole transformation on the ions only yields an equivalent 
Hamiltonian but with U + -U and pi --f -pi. In other words, the attractive and 
repulsive models transform into one another. Hence it is sufficient to consider a single sign 
of U ;  we choose the attractive case, U =- 0. Physically, one imagines the electrons and 
ions as having equal and opposite charges, and therefore the case pe = pi is referred to as 
neutral. 

2.2. The effective interaction 

A feature of the FKM is the division into ‘fast’ quantum mechanical degrees of freedom and 
‘slow’ classical ones, and it is natural to imagine ‘integrating out’ the electrons, leaving only 
ions interacting through effective classical potentials 121. Here we calculate these effective 
potentials for the case of two ions in an infinite lattice. The calculation is restricted to neutral 
systems, since this type of analysis has been found to be useful for the one-dimensional 
model [IO, 121. 

The use of an effective two-body interaction derived from isolated ions in an infinite 
empty lattice neglects the influence of other nearby ions on the pair potential of the two 
ions in question, that is, it neglects three-body and higher-order potentials. Nevertheless, 
this approach yields important qualitative information. An immediate example is that the 
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effective potentials may be divided into repulsive and attractive behaviour. In the former 
case, the ground state would be expected to be homogeneous in the distribution of ions, 
while in the latter, one would expect the ions to clump together, which is the phenomenon 
of segregation [3]. For the one-dimensional model, the boundary between the two regimes 
defines a metal-insulator transition [lo], and Lemberger [l l]  has shown that in the large 
U limit the homogeneous and segregated configurations exhaust the possibilities for the 
ground state. 

The electron motion in the presence of one or more ions may be thought of as a defect 
or impurity problem. The electron Hamiltonian is written H, = T + V ,  where T is the 
kinetic energy and V is the potential of the ions. If V is attractive, its effect on the energy 
specmm of T ,  if any, is to create one or more bound states, while the extended electron 
states in the band of T are not perturbed in energy by the ions (in the limit of an infinite 
system). For two ions at sites 0 and r ,  the bound state energies are solutions of the implicit 
equation [20] 
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G o f G , = - l / U  (3) 
where G ,  = (OI(E - T)-'lr) are manix elements of the lattice Green function, and U is 
the strength of the (attractive) defects. Hence there may be zero, one or two bound levels 
depending on U ,  the ion separation r ,  and the dimension of the lattice. 

In one dimension, below the band, 

G,(E)  = -(2sinhc~)-'e-~l'l (4) 
where E = -2coshar. and thus G ,  has an inverse square root divergence at the band edge. 
Also, G, -Go tends to the limit Ir[/2 at the band edge, and we find that there is a critical 
value, U, = 2/1r[, such that strong attraction (U > U,) gives two bound states and weak 
attraction (U < U,) only one. The value of U, decreases with increasing distance between 
ions, and for nearest-neighbour sites U, = 2, so if U z 2 there are always two bound states. 

In two dimensions, there is no longer a simple expression for G, in terms of special 
functions (although specific cases can be written in terms of complete elliptic integrals). 
However, the behaviour is qualitatively the same as in the onedimensional case, with a 
critical U below which there is only one bound state. For U 4, there are always two 
bound states. 

If two electrons are now added to make a neutral system, these will occupy the lowest 
two electronic states. Hence we define the total electronic energy, identified as the effective 
ion interaction, as the sum of the bound-state energies if there are two bound states, and as 
Eb - 4 if there is one bound state. (In the latter case, the second electron occupies a state 
at the bottom of the band.) 

For the two-dimensional problem the effective potential depends on the two-dimensional 
vector r,  but we have found that in most cases the angular dependence is very weak, so 
the potential has approximate circular symmetry. Deviations from circular symmetry occur 
due to the discreteness of the lattice, when the length scale of variations in the effective 
potential matches the lattice spacing. This occurs only near U = 3.5, and does not affect 
the general picture. Therefore, in figure 1, we display results for the effective ion potential 
Veff (r )  with r lying along a lattice axis, for various U .  The energy origin is chosen such 
that Ve,,-(co) = 0. 

The effective potential may be described as having three kinds of qualitative behaviour 
as U varies. For U > U,Z x 3.47, the potential is purely repulsive, in the sense that the ions 
may always lower their energy by moving away from one another. In an intermediate range, 
U,' < U < UCz, with Ucl = 3.26, the potential is repulsive in the sense that it is minimized 
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1 2 3 4 5 
T 

Figure 1. The effective pair potential of two classical ions, mediated by two mobile electrons 
in a infinite two-dimensional square lattice, plotted as a function of the ion separation r along 
a lattice axis. The data points are joined by lines as a guide to the eye. Three values of the 
ion-elechon interaction constant U are used continuous line, U = 3; dashed line, U = 3.3; 
dotted line. LI = 3.5. 

for infinite separation, but there is a short-range attractive part which may result in the 
trapping of the ion. Finally, for U c UCl, the potential remains attractive when the ions are 
near each other and repulsive when they are far apart, but the dominant behaviour is now 
attractive since the global energy minimum occurs when the ions are nearest neighbours. 

These results are very similar to the one-dimensional case [IO], except that there the 
critical values are Ucl = 2/& = 1.15 and U, = 1.61. 

The essential features of the effective potentials may be understood by the following 
simple argument. When the ions are well separated, the electrons reside in the approximate 
single-ion bound levels, i.e. each ion traps one electron to form an atom.  the long- 
range interaction is therefore repulsive, because Pauli exclusion resists the overlapping of 
electron wavefunctions that occurs when the atoms are brought together. Using a variational 
wavefunction constructed from single-defect states, it is easy to show that this repulsive 
tail of the effective potential is proportional to re-". Conversely, when the ions are 
sufficiently close together, only one electron is trapped in a 'molecular' bound level, and 
the other electron is delocalized. Here, the energy is reduced by bringing the ions closer 
together in order to bind the former electron more strongly. Therefore, if the ions were 
moving in a continuum, the effective potential would always be attractive at short range 
[12, 2.11. However, the range of the attractive part decreases rapidly with increasing U 
as the wavefunctions become more tightly bound, and since on a lattice the ions cannot 
approach closer than nearest-neighbour sites, one finds a completely repulsive regime for 
large U. 

On the basis of these results we may make some predictions conceming the appearance 
of neutral phases in the ground-state phase diagram. When U is greater than about U,,, we 
would expect the repulsive interaction to give rise to neutral phases with the ions distributed 
homogeneously in the lattice. For smaller U, it is possible that the ions would come together 
to form nearest-neighbour pairs, i.e. molecules. The fate of these molecules would then 
depend on the effective inter-molecular forces: the molecules may adopt a homogeneous 
distribution, or may come together to form larger aggregates; if the interactions between 
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aggregates of any size are attractive; segregation would occur. This picture is similar to 
that found for the one-dimensional model flO]. 

Another important trend in the form of !Jeff is the widening of the potential well as 
U decreases. A consequence is that for small U the effective potential depends relatively 
weakly on the ion separation within the well: for instance, the difference in energy between 
the nearest-neighbour and second-nearest-neighbour ions may be slight compared with the 
energy scale of the depth of the well. This accords with the observation (section 3) that 
the phase diagram becomes increasingly complicated as U decreases, as small changes in 
the parameters are capable of altering the energy balance between a large number of nearly 
degenerate configurations. 

These trends predicted by considering the effective ion-pair potentials are generally 
borne out by the numerical data (see section 3). However, as indicated, the present analysis 
is a fairly crude tool in understanding the behaviour of the model, and rather than attempting 
to refine it, we move on to other approaches. 
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2.3. The skeleton phase diagram 

In an elegant analysis, Gruber, Jgrzejewski and Lemberger [16] have derived a number 
of exact bounds which provide a global picture of the phase diagram of the FKM for a 
cubic lattice in any dimension. The analysis considers three specific configurations: the full 
configuration, in which every site is occupied by an ion, the empty configuration, in which 
every site is vacant, and the chequerboard configuration, in which one sublattice is full and 
the other is empty. 

Their results are summarized schematically in figure 2, for the two-dimensional case 
with U < 8. The diagram is divided into three principal regions. In the upper right region, 
the ground-state ion configuration is full; i n  the lower left, it is empty. The exact analysis 
does not describe the smcture of the central region, which we denote 5, except to say that 
there is a domain containing the point pi = fie = 0 in which the chequerboard configuration 
is the ground state. 

In the one-dimensional case, the central region 5 has been found to contain a very 
complex shucture [9, 101. In addition to the chequerboard configuration, a wealth of other 
periodic configurations are ground states in certain regions of the diagram. In fact, it is 
believed that configurations of arbitrary period occur in domains arranged to form a fractal 
structure, and that the dependence of ion density on chemical potential is a devil's staircase 
[3, 9, 10, 221. If a similar structure occurs in the two-dimensional model, then, it must be 
confined to 5. 

Another question concerns the behaviour near the upper left tip of the region 5. The 
horizontal line extending to the left separates empty and full ground states having electron 
densities equal to zero (in which case all ion configurations are degenerate). For the one- 
dimensional model, it is found [9] that this line continues inside 8, separating full and 
empty configurations with nonzero electron density, and therefore on the coexistence line 
itself the ground state may be an incoherent mixture of full and empty configurations, 
which is termed the segregated phase 131. The structure of the phase diagram near the 
tip, therefore, is connected with the phenomenon of segregation. On physical grounds, 
segregation is expected to be a general phenomenon, but to our knowledge there are no 
general results on this question in more than one dimension. 

The appearance of the phase diagram is somewhat different for U > 8. In this case, it 
can be shown 121 that for any ion configuration the electronic spectrum has a gap containing 
the interval [4--(1, -41, which we term theprincipalgap. Tben in the strip [pel < U j 2 - 4  
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Figure 2. Schematic phase diagram obtained by GNber et d [16]. Lines divide the plane 
of electron (fie) and ion hi) chemical potentials into regions (+) and (-) in which the-full 
and empty configurations, respectively, have been proved to, be the &myd states. and D, in 
which any vanslatiody non-invariant ground states must be contained. D includes the shaded 
domain, in which the chequerbaxd configuration has been shown to be the ground state. 

all the ground states are neutral, and have the Fermi energy lying in the principal gap, so the 
transport properties of the system will be those of an insulator; the phase boundaries here 
are straight lines inclined at 45". It is expected that, as in one dimension, the occurrence 
of insulating neutral phases will begin somewhat below the rigorous bound, U = 8. 

We now turn to results obtained by Kennedy [17] using rigorous pertFbation theory for 
large U .  This work investigated the neutral phases, which in the one-dimensional problem 
for large U are known to have as ground states the most homogeneous configurations (in 
a technicaI sense as defined in [ 111). Kennedy determined the ground states for ion (and 
electron) density pi = 115, 114 and 113, and proved that for 114 < pi < 112 the ground 
states have a one-dimensional character, as described below. The results confirmed the 
predictions of previous investigations [14, 151, but showed, somewhat surprisingly, that the 
large-U ground states are not the most homogeneous configurations in any reasonable sense. 

The configurations shown by Kennedy to be neutral ground states for Iarge U are 
shown in figure 3, for pi = 112 (the chequerbokd [2]), 113, 114 and 115. Each of these 
configurations consists of parallel lines of occupied sites, with all other sites empty. For 
instance in the density-1/5 structure one may draw lines of slope 112 such that every 
intersection of the line with the lattice is an occupied site, and all occupied sites lie on such 
a line. Each structure can be described by such lines in more than one way. However, the 
p = 114 and p = 113 structures have a common description: they both consist of equally 
spaced lines of occupied sites of  slope^ 112, but differ in'the spacing of the lines. Then 
the following result [17] holds for the density range 114 < p < 113: all the ground-state 
ion configurations may be described by lines of slope 112 (but their spacing may not be 
uniform). We denote the structure of the density-114 state by (lOOO), which means that it is 
a periodic repetition of one occupied line followed by three unoccupied lines: the density- 
113 state is then (100). and at all intermediate p the ground state is given by a binary 
sequence of appropriate density. A similar result [17] exists for 113 < p < 112, stating 
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that the ground states consist of parallel lines of slope 1, ranging from (100) at p = lj3 to 
(10) at p = lj2. 

These ground states, then, have essentially a one-dimensional character. Let us define 
the characteristic configuration, C,,, as the neutral ground state of density l j n  as U tends to 
infinity. Then Kennedy’s result can be phrased as follows, with n = 2 and 3: for densities 
l/(n+ 1) c p c I/n, the neutral ground state as U + CO is a ‘mixture’ of C. and C,,+1, in 
the sense that it is described by a sequence of occupied and vacant parallel lines of the slope 
shared by the lines defining C, and Cn+l. It would be natural to conjecture that the statement 
holds for all n, but on the other hand, as Kennedy observed, configurations following this 
pattern are not the most homogeneous, which appears to contradict the predictions made 
on the basis of the effective interaction (section 2.2). Since the effective interaction takes 
account of only two-body terms, we expect it to be relevant at low (or high) density, and 
this suggests that Kennedy’s rules break down at low (or high) density. We shall find 
(section 3.2) that this is precisely what occurs: the above statement is valid only for n = 2, 
3 and 4. In particular, the characteristic configuration for density lj6 does not follow the 
pattern. 
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......... . . . . . . .  ......... 
....... . . . .  ........ 

p = 112 p = 113 p = 114 p = 115 
Figure 3. Characteristic configurations derived by Kennedy [17]. which are neutnl ground 
states for large U for the given densities. Large dots: occupied sites: small dots: vacant sites. 
The lines indicate the characteristic slopes discussed in the text. 

2.4. Periodic ion configurations 

Our numerical work is based on the construction of the restricted phase diagram, which 
means that we restrict the search for the lowest-energy state to periodic ion configurations 
with a unit cell having fewer than Nc sites, where Nc is a cut-off value depending on the 
available computer time. The reason for the restriction to periodic states is simply that this 
case is numerically tractable for motion in an infinite lattice. A similar approach has been 
very successful in the study of the one-dimensional Falicov-Kimball model [3, 9, 101, as 
well as other models with competing interactions 1231. 

The analysis of periodic configurations in two dimensions lacks the simplifying identities 
available in one dimension [24]. The key point is then the reduction of the model to a finite- 
dimensional eigenvalue problem, and the construction of the density of states, electron 
density and electronic energy as a function of electron chemical potential. 

A two-dimensional periodic configuration is described by two primitive vectors al and 
az, and the area of the unit cell is NO = a1 x az. If the electron wavefunction is $+, as a 
function of lattice site r ,  Bloch‘s theorem states that under translation by a lattice vector 
R = m a l  + naz with m and n integers, it satisfies 
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where k = ( k x ,  ky) is the Bloch wavevector. The electron motion is thus reduced to a 
No-dimensional eigenvalue problem, whose eigenvalues we denote Evk. with branch index 
U = 1,2, . . . , NO. The wavevector k is restricted to a parallelogram-shaped Brillouin zone 
of area (2rr)2/N,.  All quantities of interest are calculated from the (normalized) density of 
states 

In particular, the electron density 
we-u/2 

P ~ ( P ~ L ~ )  = 1 Z(E)dE 
-m 

and total electronic energy per site 

(7) 

w.-u/2 
= j EZ(E) dE  (8) 

-m 

as a function of the Fermi energy (2). The energy per site in the grand canonical ensemble 
is defined as 

(9) 

These formulae are the basis of the numerical treatment in section 3. 
The electronic spectrum is divided into NO branches. For the one-dimensional model, 

it can be shown [Z] that the branches do not overlap and each forms a separate band, but 
in two dimensions this is not the case. It is easy to see. in fact, that the generic situation is 
that bands do overlap, and that many branches fuse into relatively few bands. 

For some configurations, such as the chequerboard, the discrete eigenvalue problem 
is simple enough that some further progress can be made analytically [lo, 14, 151. An 
interisting class is the stripe configurations, which we define as those having (0.1) or (1.0) 
as primitive vectors. These have the appearance of vertical or horizontal stripes (see, for 
example, figure 9), and may be regarded as degenerate cases of Kennedy's characteristic 
configurations, with zero slope. The eigenvalue problem here reduces immediately to a 
one-dimensional one, and we find 

Ecc = ET - - U / 2 h  - (pi - Ul2)pi. 

2 

Z(E) =(l/n)/ Z I ( E + X ) ( ~ - X ~ ) - ' / ~ ~ ~  (10) 
-2 

where Z1 is the density of states of the one-dimensional system obtained by taking a 'slice' 
perpendicular to the stripes. Z1 consists of No bands with inverse square root singularities 
at the edges. The two-dimensional density of states is obtained by a convolution with 
(4 - x2)-'/', which eliminates most of the gaps. 

The location of gaps in the electronic spectrum determines the transport properties of 
the corresponding state, and it is therefore informative to gain a qualitative understanding 
of the occurrence of gaps by considering the limiting cases of small and large U, for any 
periodic ion configuration. For small U we may treat the ion potential as a perturbation 
of the single U = 0 band, and then gaps do not open unless there is an electron density 
for which the Fermi surface is nesting, as at pe = 112 in the chequerboard 'configuration. 
(The fact that nesting always occurs in one dimension is responsible for the opening of 
gaps in that case.) In fact, it is easy to see that the chequerboard structure is the only 
configuration which has precise nesting. With this one exception, therefore, there are no 
gaps for sufficiently small U. 
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For large U ,  gaps are expected, since at U = 00 the electron states are localized. For 
U > 8, the principal gap is opened and has minimum extent [4 - U, -41, but there are 
frequently other gaps as well, and these may be understood by IargeU perturbation theory. 
The splitting of bands below the pricipal gap is given in first-order degenerate perturbation 
theory by the projection of the kinetic energy onto the degenerate subspace, which is an 
operator describing nearest-neighbour hopping restricted to the sublattice of occupied sites 
in the given configuration. If this sublattice permits no open orbits, forming a potential 
well which traps the electron, then the energy shifts are discrete and when broadened by 
higher-order perturbations form separate bands; we find then that the lower band is split into 
subbands. The number of subbands is at most equal to the number of full sites in the unit 
cell of the ion structure, but is sometimes fewer, when symmetry and higher-order splittings 
need to be taken into account. In contrast, if hopping on the full sublattice permits extended 
motion, the corresponding band is usually not split. Similarly, the splitting of bands above 
the principal gap is found by considering hopping on the empty sublattice. 

As examples, we observe that the characteristic configurations in figure 3 have 
unbounded motion on the empty sublattice, and only one full site per unit cell, and therefore 
no splitting for large U ;  for small U there are no gaps. Therefore, we expect no gaps for 
any U ,  apart from the principal gap opening somewhere below U = 8. The same holds 
for the chequerboard structure, except that the principal gap opens at U = 0. Similarly 
the stripe. configurations discussed above have no gaps other than the principal one. An 
example of a structure with other gaps is figure 15(a). 

3. The restricted phase diagram 

3.1. The computational method 

Here we briefly describe the numerical procedure by which we have constructed the 
restricted phase diagrams in the grand canonical ensemble for a range of values of the 
interaction strength U .  

The first step is to select a set of ion configurations to be taken into account. We have 
chosen to use the periodic configurations for which the (minimal) number of sites per unit 
cell, NO, is less than or equal to a specified value, N,. 

The number of allowed configurations increases  rapidly with N,. In addition, the 
computer time required for diagonalization increases with NO, so the total computer time 
increases very rapidly with Nc. The number of configurations can be reduced somewhat 
using the symmetry of the problem under rotation and reflection, and using the particle-hole 
symmetry, which implies that only configurations with an ion density less than 1/2 need be 
diagonalized. Nevertheless, the number of configurations approximately doubles with each 
unit increase in N,. We have chosen N, = 15, for which there are 10383 distinct allowed 
configurations. 

It is not possible to enumerate here all the configurations in our trial set, and in fact it is 
not even possible to list all configurations that occur as ground states in our phase diagrams. 
Instead, in the following sections, we list a limited set of configurations occurring in the 
ground-state phase diagram which, we believe, illustrate the full range of behaviour of the 
model. 

For each value of U and for each periodic configuration in our trial set, we have 
performed a numerical solution of the corresponding eigenvalue problem (see section 2.4). 
This involves finding the eigenvalues of an No-dimensional matrix for each value of k in a 
two-dimensional grid covering the Brillouin zone. The use of a grid of k-values amounts 
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to considering the electron motion in a finite lattice, and imposes a finite resolution on 
the resulting total energy. In order to minimize this source of numerical error, we have 
chosen a k-space grid which is not aligned with the Cartesian axes, to avoid clustering of 
eigenvalues due to symmetry of the grid, and we have employed an interpolation procedure 
in the calculation of integrated density of states and total energies from the eigenvalues. 

Our calculations were performed with a k-space grid of 12100 points for each 
configuration. By varying the resolution of the c i a ,  we may estimate the resulting truncation 
error in the total energy calculation as less than 1 part in io4. 

Finally, the phase diagram is constructed using the calculated total energies. For each 
value of the electron chemical potential fie, the electronic energy E7(pe) determines the 
energy in the grand canonical ensemble, equation (9). for all values of ion chemical potential 
pi. This determines the range of pi ,  if any, in which the configuration has Iower E G ~  than 
any other considered so far. Repeating this calculation for all pc and all configurations in 
our trial set yields the restricted phase diagram, namely the ground-state ion configuration 
and electron density for each (pe, pi) point. The minimization of energy as a function of 
pi for fixed fie is aided by the fact that EGC is a concave function of chemica~potentials, 
which implies that the ground-state ion density is a nondecreasing function of pt for fixed 
w e  [161. 

3.2. Lurge U and neutral confrgurations 

The phase diagrams for large U have a relatively simple structure, and so we begin our 
description of the numerical results by presenting, in figure 4, the restricted phase diagram 
for U = 8. With the one exception described below, the diagram for U z 8 is qualitatively 
the same as this one, and thus we expect U = 8 to be sufficiently large for the perturbation 
theory of [16, 171 to apply. 

d 

3 

2 

1 

0 

-3  -2  -1  0 

Figure 4. Calculated restricted phase diagram for U = 8. The upper and lower areas correspond 
to full and empty ground states, respectively. Various neuval ground states exist in the other 
domains. the largest (which includes the origin) corresponding to the chequerboard phase. 
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Only one quadrant of the plane of chemical potentials is represented, as the full diagram 
is symmetric about the origin, and the large domains occupied by full and empty phases 
need not be displayed. The diagram plots the phase boundaries which divide the plane of 
chemical potentials into domains, in each of which a single ion configuration is the ground 
state. The upper region corresponds to the full configuration, the lower region to the empty 
configuration, and the largest of the remaining regions is the chequerboard phase. 

The phase diagram is fully consistent with the rigorous results (figure 2 and section 2.3): 
the plane is divided by a central portion into regions in which the full (+) and empty (-) 
configurations are ground states. For large U the exact results also guarantee the existence 
of a strip of pe in which all ground states satisfy the neutrality condition p. = pi. However 
the rigorous bound on the width of this strip vanishes for U = 8, and so the numerical 
results allow a stronger statement: for U > 8 all ground-state phases, apart from full and 
empty, are neutral, have E.= in the principal gap, and have phase boundaries which are 
diagonal straight lines. 

The central portion is divided into diagonal stripes in which various periodic ion 
configurations are ground states, in a similar manner to the one-dimensional case. (Some 
of the stripes are too narrow to be clearly resolved.) The sequence of ion densities, reading 
from right to left at fixed pc, is 1/2, 4/9, 3/7, 5/12, U5, 113, 4/13, 3/10, Z7, 1/4, 3/13, 
U9, 3/14, 1/5, 1/6, US, 1/10, 1/11, 1/12, 1/14. the pi = 1/2 phase being the large region 
containing the origin. 

In section 2.3, we defined the characteristic configurations C, as the U -+ 00 neutral 
ground states for densities equal to the reciprocal of an integer, and some of these may 
be obtained directly from our numerical data. For p = 1/5, 1/4, 1/3 and 1/2 they are in 
agreement with those derived rigorously by Kennedy [17], while for other densities they are 
the configurations depicted in figure 5. Most of the configurations given in the figure are 
present in the U = 8 phase diagram. The first exception is due to the fact that the neutral 
ground state for density 1/6 changes with U ;  this is a new feature of the two-dimensional 
model, since in one dimension the neutral ground states have never been observed to change 
with U. In the figure the ground states for U = 8 and U = 20 are given: the latter is then the 
characteristic configuration C6. The second exception is that the density 1/15 configuration 
is taken from the U = 7 phase diagram, since it was not found for U = 8, perhaps because 
of the limited resolution. 

Our numerical procedure does not, of course, determine the characteristic configurations 
rigorously, since there may be lower energy configurations of higher period. In addition, 
there are missing members of the series, notably those with density 1/7 and 1/9. It is likely 
that these phases would appear if the limit on unit cell area were increased, but our results 
to date leave certain characteristic configurations undetermined. 

The characteristic configurations in figures 3 and 5 can be described as consisting of 
parallel lines of occupied or vacant sites. However, Cs appears anomalous, as its structure 
has two ions per unit cell, and cannot be described by uniformly spaced lines of occupied 
sites. (It can be viewed as uniformly spaced half-occupied lines of slope 1.) Also, it does 
not share a slope with C,, and therefore it does not appear possible to describe the U + 00 

neutral ground states with 1/6 < p < 1/5 in a similar way to Kennedy’s [17] result for 
1/4 < p c 1/2. However, due to our limited set of trial configurations, we are not able to 
study the density range 1/6 < p < 1/5: this question warrants further analytical study. 

In the density range 1/5 < p 2 1/2, our results for densities intermediate between 
characteristic configurations are fully consistent with the ‘conjecture’ formulated in 
section 2.3: the ground-state configurations consist of parallel lines of occupied or vacant 
sites at a fixed slope. The configurations for l/(n + 1) c p c l / n  have the same 
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p = 1/11 p = 1/12 p = 1/14 p = 1/15 

(U = 7) 
Figure 5. Neutral ground states for selected densities, taken from the U = 8 phase diagram 
unless otherwise indicated. Except for the first configuration, these axe conjectured to be 
characteristic configurations, i.e. nelrtral ground states in the limit of large U with density 
equal to the reciprocal of an integer. 

characteristic slope. which we denote~s,. Our numerical data yield s2 = 1, sg = 112 
and s4 = 112, of which the first two agree with Kennedy’s results [17]. 

In figure 6 we list the numerically determined ground states for the density range 
113 < p < 112, which are characterized by the slope s2 = 112. The configurations 
are perfectly described by a surprisingly simple composition rule, with the structure of 
the Farey tree [9, 101. Consider, for example, the density 2/5 state. In the Farey tree, 
2/5 is a ‘descendant’ of 1/2 and 1/3, whose structures are given by the patterns (10) and 
(loo), respectively, with slope 1. The pattern of the p = 2/5 ground state is (10100), 
which is simply the concatenation of the parent patterns. Similarly, the density 3/7 state 
(1010100) descends from 1/2 and 2/5, the density 4/9 state (10101010100) descends from 
1/2 and 3f7, and the density 5/12 state (101010010100) descends from 3/7 and 2/5. This 
kind of hierarchical composition rule is typical of one-dimensional systems with competing 
interactions, such as the axial nearest-neighbour Ising model 1251. 

To summarize, we have found that the pattern established by Kennedy is obeyed for 
neutral phases in the density range 115 < p < 4/5. and that all the ground-state ion 
configurations are described by a simple composition rule applied to the characteristic 
configurations. For densities outside this range, including the anomalous case p = 116, 
the pattern is not obeyed. 

Let us now describe how this picture changes on reducing U. As already mentioned, the 
density-1/6 neutral configuration changes, as depicted in figure 5. Two futher qualitative 
changes take place. Firstly, new families of ground states, not satisfying the neutrality 
condition p. =p i ,  begin to appear. Secondly, at rather low U, the neutral phases undergo a 
dramatic change. That is, although the existence of a region of neutral phases, with Fermi 
energy in the principal gap, persists to small U, the corresponding ion configurations no 
longer have the structure described above, and all the characteristic configurations disappear, 
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p = 419 p = 317 

Figure 6. Neulrd phases with 1/3 < 

. . . . . . . . .  ......... .. . . . . . . .  . . . . . . . . .  ......... ......... ......... . . . . . . . . .  ......... . . . . . . . . .  ......... ......... ......... . . . . . . . . .  ......... ......... ......... ......... 
p = 5/12 p = 215 

112 in the U = 8 restricted phase diagram. : p 

except for the chequerboard. For example, in the U = 1 phase diagram we observe a 
sequence of neutral phases with ion densities 1/2, 7/15, 3/7, 5/12, 2/5, 3/8, 5/14, I/3; 
four of them are pictured in figure 7. Here, the ions adopt anangements cons’aucted by 
introducing homogeneously spaced lines of vacancies, aligned with the lattice axes, into the 
chequerboard structure. Configurations in this family have a principal gap even at rather 
low U, and when they are ground states have E.P in the gap. Once again, the ground states 
are regular and essentially one-dimensional in character. 

......... . . . . . . . . .  ......... . . . . . . . . .  ......... . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  ......... 
p =~ 215 

Figure 7. 
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p = 318 p = 5/14 p = 113 

The sequence of neutral ground states in the U = 1 restricted phase diagram. 

3.3. Stripe configurations 

Figure 8 shows an enlargement of a region of the restricted phase diagram for U = 6, 
at the tip of the domain of neutral phases. (The remaining phase diagram is similar to 
the U = 8 case.) There appear two features not present at U = 8. One is a new phase 
adjoining the (+) region, marked B in the figure, which will be described in section 3.5 
below. The second is an entire family of new phases at A, adjacent to the neutral region 
and the segregated phase. 

This new family consists of stripe phases, which were defined in section 2.4 as those 
with a one-dimensional unit cell, with unit period along the perpendicular direction. The ion 
densities of the stripe phases in region A of figure 8, reading from right to left, are 1/3,4/13, 
3/10, 2/7, 3/11, 4/15, 1/4, 3/13, U9, 3/14, 1/5, 2/11, 1/6, 2/13, 1/7, 2/15, 118 and 1/9. This 
sequence contains all fractions in the range [1/9,1/3] with denominator less than or equal 
to 15, in decreasing order. The configurations themselves also obey a regular hierarchy, as 
illustrated in figure 9, which lists the ground-state stripe configurations with ion densities 
1/3, 2/7 and 1/4. Once again, the structure is that of the Farey tree: the density-113 and 
density-l/4 states are described as (100) and (low), respectively, and their ‘descendant’ 
state of density 2/7 has the concatenated structure (1001000). The descendant of 1/3 and 
2/7 has the structure (1001001000) with density 3/10, and so on. 



Two-dimensional Falicov-Kimball model 9535 

2.1 

L 

1.9 

1.8 

1.7 ' I 
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k 
Figure 8. Detail of lhe calculated restricted phase diagram for U = 6. Domains labelled A 
correspond to the snipe configurations (section 3.3). and B points to an unusual insulating phase 
discussed in section 3.5. 
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Figure 9. The ground-state stripe configurations with ion densities 1/3, 217 and 114 from the 
U = 6 restricted phase diagram. 

In all the restricted phase diagrams we have constructed for U < 6, namely U = 6, 
4 , 2  and 1, we have found a region in which stripe configurations ace the ground states. 
Invariably, the sequence of phases is that of the Farey tree with the simple composition 
rule. However, they differ in the range of densities which is represented; for example for 
U = 2 only densities in the range [1/4,1/2] are found in the stripe region, and for U = 1 
only [1/3,1/2]. Thus, extrapolating to arbitrarily high period, we may conjecture that the 
sequence of shipe phases forms a devil's staircase, but that the staircase is not complete, 
since a limited range of densities appears. This incompleteness, especially for low U, occurs 
also in the one-dimensional model for the neutral phases [9, lo]. 

A very surprising feature of the stripe configurations in the phase diagram is that the 
boundaries between them are very nearly parallel. This is also a feature of the phase 
diagram of the one-dimensional model, where it is due to the fact that the Fermi energy 
lies in a gap of the single-electron density of states, and hence the phase boundaries are 
straight lines of the same slope. Here, however, the explanation must be different, since 
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the phase boundaries are curved, but appear to be parallel nevertheless. Furthermore, the 
stripe configurations have no gaps in the range of U under consideration (as expected from 
the qualitative arguments of section 2.4). Instead, it happens that the density of states is 
such that the ratio of electron to ion density is very nearly independent of the configuration 
(although dependent on electron chemical potential), so that all the phase boundaries at 
fixed p. have the same slope. 

3.4. Molecules, and multiple and staggered stripes 

In figure 10 we present a detail of the calculated phase diagram for U = 2. Although 
we expect the diagram to be accurate in that the precision of our calculation is sufficient 
to resolve energy differences between configurations, it is likely that for this low U there 
are inaccuracies due to the limit on the period of the trial configurations. In other words, 
we do not expect the restricted phase diagram to represent fully the true phase diagram. 
Nevertheless, we may identify some regular families of ground states: in the lower part of 
the figure, we have the neutral phases discussed in section 3.2, the intermediate shading 
corresponds to stripe configurations (section 3.3), the light shading corresponds to staggered 
stripes (see below), and in the dark shaded area we find molecule formation. Other unshaded 
areas do not fit into one of these categories, and may correspond to genuine ground states 
(section 3.5) or to artefacts of the finite set of trial configurations. 

G I Watson and R Lemanski 

e 
Agum 10. Detail of the restricted phase diagram for U = 2. Light shading: staggered snipe 
phases; medium shading: stripe phases; heavy shading: molecular lauiees. Phases labelled C 
and D are discussed in section 3.5. 

The heavily shaded area in figure I O  contains a variety of configurations consisting of 
molecules. Some examples are listed in figure 11: these occur with increasing Ipel in the 
phase diagram. In ( a )  to ( c )  we observe the formation of dimers, which then repel each 
other resulting in dimer lattices with various orientations, or in  mixed lattices of dimers and 
single ions. Figure ll(d) demonstrates the formation of a lattice of molecules of four ions. 
There exist also ground states consisting of linear molecules of three or more ions. Similar 
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types of molecule configurations are grouped together in the phase diagram. In figure 10, 
the molecular phases lying below the staggered stripe domain are various lattices of dimers, 
the phase in the extreme tip is the four-ion molecule of figure Il(d), and the molecular 
phases lying furthest to the right and adjacent to the full configuration involve molecules 
of vacancies. 
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Figure 11.. Selected molecular lanices occurring in lhe U = 2 phase diagram. 

For many of these molecular configurations the density of  states has a gap, and the 
Fermi energy lies in a gap when the Configuration is the ground state. However, this gap is 
not the principal gap, and the resulting phase is not neutral: instead, invariably, the electron 
density is very close to one electron per molecule. (This phenomenon has been observed 
previously in the one-dimensional FKM [IO].) There appears to be some regularity in the 
structure of this family of ground states, but our resolution is not sufficient to explore this 
in detail. 

When U is reduced further to 1, the restricted phase diagram appears as in figure 12. 
Here, the problems associated with finiteness of the set of trial configurations is most serious, 
but it is possible to make some general statements. The various families of ground states 
indicated in the U = 2 phase diagram (figure IO) also appear here, with the staggered 
stripe configurations (described below) particularly prominent. An additional family occurs 
in the extreme tip of  the nontrivial portion of the diagram, between molecular lattices and 
the segregated phase. This is the family of multiple-stripe configurations, illustrated in 
figure 13. These patterns resemble the molecular lattices of the one-dimensional model 
[IO]: lines of ions in a stripe configuration attract each other. forming stripe pairs which 
subsequently repel, resulting in a regular array of pairs. As with other stripe phases, these 
do not have gaps in their single-electron densities of state. 

The regions indicated by light shading in figures 10 and 12 contain a further regular 
family of configurations, which we term staggered stripes. A part of 'he full sequence 
occurring for U = 1 with increasing is given in figure 14. All the configurations have 
ion density ID, and the sequence begins with the pi = l j 2  stripe configuration and ends 
with the chequerboard, the intermediate phases being, in a sense, interpolations between 
the two structures. In other words, as we is increased from the stripe phase, increasing 
numbers of regularly spaced faults appear in the stripes, until the chequerboard is gradually 
reached. Thus, with changing pe ,  the system undergoes a (presumably infinite) sequence of 
transitions between configurations of the same ion density. Another interesting property of 
this family is that for low IpeI ('nearly chequerboard' configurations) the Fermi energy lies 
in a gap and the dependence of electron density on pe forms a devil's staircase, while for 
larger lpel the configurations no longer have gaps and the staircase becomes smeared out. 
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Figure 12. Calculated restricted phase diagram for U = 1. The shaded areas correspond to the 
staggered stripe phases (section 3.4). 
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Figure 13. Selected multiplestripe configurations occurring in the U = 1 phase diagram. 

3.5. Other configurations 

There are a number of configurations appearing as ground states in the restricted phase 
diagrams, particularly for low values of U, which do not fall into any of the above 
families. It is not practical to list all of them; rather, we wish to mention only one class of 
configurations which seem important simply because they do not seem to fall into readily 
identifiable families, and do not have any of the onedimensional properties characteristic 
of the families considered previously. In other words, we describe configurations which 
have an essentially two-dimensional character. 

Several examples are given in figure 15. Configuration (a )  appears in the phase diagram 
for intermediate U, and its ion-vacancy inverse is the phase marked B in figure 8. Although 
this could be considered a lattice of dimers, it does not occur adjacent to other dimer 
configurations, and in fact it appears at much larger U than any other dimer states. Therefore, 
we,view it as forming a class of its own. Finally, we mention the configurations of figure 15, 
( b )  and (c), which occur in regions marked C and D, respectively, in the U = 2 phase 
diagram (figure 10). 
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Figure 14. Selected staggered stripe configurations occuning in the U = 1 phase diagram, 
given in left to right order in figure 12. 
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Figure 15. Miscellaneous configurations occurring in the restricted phase diagrams: (a) for 
U = 6; (b)  and (c) for U = 2. 

4. Discussion 

Let us briefly summarize the changes that occur as the interaction constant U is varied. As 
in the oneldimensional case, and in accordance with the general discussion of section 2.2, 
the phase diagram becomes increasingly complicated as U decreases. For large U, the 
only phases appearing (as finite regions) are neutral ones (pe = pi) and the full and 
empty configurations. All the neutral phases are insnlating.~ For densities in the range 
1/5 < p < 4/5, they have ion configurations obeying a simple set of rules (section 3.2). 
Outside this range their structure has yet to be completely characterized, but consideration of 
the effective two-body ion interactions (section 2.2) suggests that the ground states for low 
or  high^ density are homogeneous in the distribution of ions. When U is decreased to about 
6, the stripe configurations (section 3.3) begin to appear, and these obey a composition rule 
identical to that observed~in the one-dimensional model. At the same time, the first of a 
class of configurations which must be considered essentially two-dimensional (section 3.5) 
appears. On decreasing U further, we observe new families of ground-state configurations, 
the molecular lattices, multiple stripes and staggered stripes (section 3.4). 
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The Falicov-Kimball model is formally equivalent to an Ising model with a highly 
complicated and frustrated effective interaction, and indeed the various families of ground- 
state configurations discussed here are reminiscent of ground states found for certain 
frustrated Ising models on two-dimensional lattices [26]. 

There are many similarities in behaviour between the Falicov-Kimball models in one 
and two dimensions. Some of them are quite general, and independent of dimension, as 
has already been established by Gruber et al [16J Our work has identified other features 
common to both one-dimensional and two-dimensional cases. 

(i) The only ground-state phases for large U which are not translationally invariant 
are the neutral ones. All neutral phases which appear on the ground-state phase diagram 
are insulating (with the Fermi level in a gap). As a consequence, the boundaries between 
different neulral phases are straight line segments with unit slope. 

(ii) Configurations of the ions corresponding to the main families of ground-state phases 
are described by a simple composition rule, with the smcture of the Farey tree. 

(iii) There is a critical value of U = U,, such that for U < U, there is an interval of 
ionic densities, (j;(U), 1 -,?i(U)), with ci(U) 0, to which the neutral phases are confined. 

(iv) The formation of molecules takes place for small enough values of U .  
(v) The effective potential between two ions in the neutral case is purely repulsive for 

large U ,  while for intermediate and small U it is attractive at short range and repulsive at 
long range. 

dimensional phase diagrams. In particular, we find that in the tw+dimensional case. 
There are, however, important differences between the one-dimensional and two- 

(i) The neutral phases. for at least a range of densities, do not correspond to the most 
homogeneous distributions of the ions over the lattice, as already proven by Kennedy [17] 
for some cases. 

This 
phenomenon was not observed in the one-dimensional model, where the ground-state neutral 
configuration for a given p; persists for all values of U .  In two dimensions it appears in two 
ways. Firstly, for density 1/6 there is a transition between two different ion configurations at 
fairly large U .  Secondly, for smaller U the sequence of neutral phases changes completely, 
with only a set of chequerboard-like configurations remaining (section 3.2 and figure 7). 

(iii) In one dimension, any periodic ion configuration has an electronic spectrum split 
into as many bands as the number of sites in the period. With the exception of full and 
empty phases, all phases found as ground states are insulating, and all the phase boundaries 
are straight line segments. In two dimensions, however, many non-neutral ground-state 
phases which appear on the phase diagram for intermediate and small U are conducting, 
and in fact have no gaps at all in their energy spectrum. Consequently the boundaries 
between these phases are not straight line segments. Surprisingly, however, the boundaries 
are nearly parallel for the family of stripe configurations (see section 3.3). 

For the one-dimensional model, an explanation for the composition rule which describes 
the construction of ground-state phases for small U [3] involves the stabilization effect of 
the gap created at the Fermi level when the ions adopt a suitable periodic arrangement. The 
most stable configuration is that with the largest gap. (For large U, the same rule can be 
justified on the basis of an effective ion interaction which is repulsive and convex [27].) 
In its simplest form, this argument is restricted to one dimension, since in that case the 
Fermi surface consists of two points and always has perfect nesting. The striking property 
of the two-dimensional model that several families of phases are described by a form of 

(ii) The distribution of the ions for some neutral phases changes with U .  



Two-dimensional Falicov-Kimball model 954 1 

one-dimensional composition rule, even when there are no gaps, must then be related to 
partial nesting of the Fermi surface. In other words, a periodic ion arrangement is stabilized 
by the opening of a gap over part, but not all, of the Brillonin zone. 

We now turn to the question of segregation. In the terminology of section 2.3, we 
have found that the boundary between the full and empty phases does continue inside the 
domain 5, and therefore that there are a range of densities for which the ground state is the 
segregated phase. This is a (phaseseparated) mixture of the full configuration containing 
all the electrons, and the vacuum (the empty phase without electrons). The same feature 
has been proved rigorously in one dimension [ I I ,  281 and in infinite dimensions [19]; our 
work supports the conjecture that it occurs for any dimension. A complication of models in 
more than one dimension is that one can imagine the segregated phase with various shapes 
of boundaries between the full configuration and the vacuum. It would be interesting to 
study the optimal shape of the boundary for a given pi and A. 

The phase diagram in the canonical ensemble (p,-pi~ plane) for large U is dominated 
by segregated and neutral phases, in both one and two dimensions, in the sense that ‘most’ 
of the phase diagram corresponds to a segregated ground state, a sequence of special phases 
occurs on the neutral line pe = pi, and the remaining region (containing mixtures between 
neutral phases and mixtures of neutral phases with full or empty configurations) shrinks to 
zero in area as U tends to infinity. The detailed comparison of canonical phase diagrams 
for the full range of U can in principle be carried out using our results, but it is not trivial 
to transform from one representation to the other, and we leave this topic for a future 
publication. 
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